Is Reverse TSA Overused in the Elderly?
Making Sense of the Literature

SEFC 2016
Ganesh Kamath, MD
Asst. Professor, Sports Medicine
UNC Orthopaedics
Proximal humerus fragility fractures: recent trends in nonoperative and operative treatment in the Medicare population

Richard J. Han, MD, David C. Sing, BS, Brian T. Feeley, MD, C. Benjamin Ma, MD, Alan L. Zhang, MD.*
Look Closer

- Operative treatment not increasing.

- Among surgical patients:
 - 42% hemi (2005) → 24% hemi (2012)

- Similar 2 yr survival rates (methodology?).
 - 98% RTSA
 - 99% HSA
Why Reverse TSA?

- Greater tuberosity fixation / healing unpredictable.

- RTSA offers potentially cuff independent elevation of the arm.
Why not Everybody?

- Longevity
- Complication rates
- Activity limitations
- Cost / benefit
Which Fractures

• Displaced 3- and 4-part proximal humerus fractures

• Head splitting fractures

• Fx-dislocations

• REAL QUESTION IS :
 – HEMIARTHROPLASTY OR REVERSE SHOULDER?
Should we operate at all?

• Several RCTs looking at non-op mgmnt vs. Hemiarthroplasty (HA)
 – Boons et al CORR 2012
 – Olerud et al JSES 2011
 – Fialka et al JSES 2008

• NO DIFFERENCE!!
 – ASES / Constant
 – SST
 – ROM
 • Forward elevation
 • Abduction
But Wait!!

• Olerud et al JSES 2011

• SAME Constant / ROM

• But...
 – ↑HRQoL by EQ-5D
 – ↑DASH

• ARE WE USING THE RIGHT INSTRUMENTS?
What makes a good hemi?

- GT healing
 - Improved FE
 - Improved functional outcomes

- Failure of GT
 - Inability to elevate beyond 90 deg

- Role of fracture stems
 - Boileau et al JSES 2013
Reverse TSA vs. Hemiartroplasty

Two Recent Systematic Reviews

- **Ferrell et al JOT 2015**
 - FE: 118 vs. 110
 - ER: 20 vs. 30
 - ASES / Constant same
 - Cx Rate: 9.3% vs. 4.1%
 - Revision: 1% vs. 4%

- **Mata-Fink et al JSES 2013**
 - FE: 113 vs. 92
 - ER: Equal
 - ASES: 75 vs. 56
 - Constant: 55 vs. 49
 - No difference in complications
Looking closer

Mata Fink et al (PRO REVERSE)

• Only comparative studies
 – RCTs
 – Case Controls
 – Subsequent series

Ferrell et al (equivalent)

• All series reporting results of hemi or RTSA
• Included many series of patients with EXCELLENT results after hemi
 – (Krishnan, Kontakis, Amirfeyz, Boileau)
Systematic review

- Only Reverse TSA vs. dedicated fracture stem
 - (210 vs. 230)

- Near equivalent results.
 - FE 114 vs. 117
 - ER 20 vs. 30
 - Constant 50 vs. 56
 - ASES 76 vs. 69

- Much higher complication rate in RTSA (largely dislocation)
Are there any Level I RCTS?

• Forcada et al JSES 2014
 – 62 patients (all > 70 yo)
 – RTSA much better
 • FE 120 vs. 80
 • Constant 56 vs. 40
 • Lower revision rates

• Cuff et al JBJS 2015
 – Consecutive series of patients
 – RTSA and Hemi are equivalent IF GT HEALS
 • Bimodal distribution with hemi “all or nothing”
Patient Factors

Sport / Activity after RTSA

- 66% swimming
- 10-50% golf
- 0%-25% tennis
- FE 140 / ER 50 in series
- Elective / Non-trauma setting

- Garcia et al AJSM 2015

Longevity

- Accepted survivorship
 - 83-89% at 10 years

- Deterioration of functional result after six years
 - (Walch et al / Sirveaux et al)
What about the option to convert?

Levy et al JBJS 2007

- 29 pts converted from hemi
- FE 38 to 73
- AB 34 to 70
- ASES 22 to 52
- 28% complication rate
- 55% GE / 21% poor

• CLEARLY INFERIOR TO PRIMARY REVERSE TSA
Complications

• Most papers cite higher rate of complications with reverse TSA vs. hemi (Mata-Fink, Ferrell, Namdari).

• If the rates of dislocation (reverse) and revision/conversion (hemi) are considered there is a much smaller difference in overall complication rate in shorter term studies.

• Longevity of either prosthesis is not fully understood.
Conclusions

• Data mixed regarding RTSA vs Hemi.

• Hemiarthroplasty clearly an excellent options in certain surgeons hands.

• Failure of the GT → far superior results with RTSA

• Dedicated fracture stem proven to have higher rates of GT union.
My Practice

• “Physiologically” young 65-70 yo patient
 – High demand (swim / tennis / golf / etc.)
 ➔ Hemiarthroplasty with fracture stem.

• “Physiologically” older patient, >70 yo:
 – Functionally low demand
 ➔ Reverse TSA – why risk GT failure?